20 research outputs found

    A Parallel Surrogate Model Assisted Evolutionary Algorithm for Electromagnetic Design Optimization

    Get PDF
    Optimization efficiency is a major challenge for electromagnetic (EM) device, circuit, and machine design. Although both surrogate model-assisted evolutionary algorithms (SAEAs) and parallel computing are playing important roles in addressing this challenge, there is little research that investigates their integration to benefit from both techniques. In this paper, a new method, called parallel SAEA for electromagnetic design (PSAED), is proposed. A state-of-the-art SAEA framework, surrogate model-aware evolutionary search, is used as the foundation of PSAED. Considering the landscape characteristics of EM design problems, three differential evolution mutation operators are selected and organized in a particular way. A new SAEA framework is then proposed to make use of the selected mutation operators in a parallel computing environment. PSAED is tested by a micromirror and a dielectric resonator antenna as well as four mathematical benchmark problems of various complexity. Comparisons with state-of-the-art methods verify the advantages of PSAED in terms of efficiency and optimization capacity

    Time and Frequency Domain Simulation, Measurement and Optimization of Log-Periodic Antennas

    Get PDF
    Log-periodic antenna is a special antenna type utilized with great success in many broadband applications due to its ability to achieve nearly constant gain over a wide frequency range. Such antennas are extensively used in electromagnetic compatibility measurements, spectrum monitoring and TV reception. In this study, a log-periodic dipole array is measured, simulated, and then optimized in the 470–860 MHz frequency band. Two simulations of the antenna are initially performed in time and frequency domain respectively. The comparison between these simulations is presented to ensure accurate modelling of the antenna. The practically measured realized gain is in good agreement with the simulated realized gain. The antenna is then optimized to concurrently improve voltage standing wave ratio, realized gain and front-to-back ratio. The optimization process has been implemented by using various algorithms included in CST Microwave Studio, such as Trusted Region Framework, Nelder Mead Simplex algorithm, Classic Powell and Covariance Matrix Adaptation Evolutionary Strategy. The Trusted Region Framework algorithm seems to have the best performance in adequately optimizing all predefined goals specified for the antenna

    Predictions for Proton Lifetime in Minimal Non-Supersymmetric SO(10) Models: An Update

    Full text link
    We present our best estimates of the uncertainties due to heavy particle threshold corrections on the unification scale MUM_U, intermediate scale MIM_I and coupling constant Alpha_U in the minimal non-supersymmetric SO(10) models. Using these , we update the predictions for proton life-time in these models.Comment: UMD-PP-94-117 ( 20 pages;latex; no figures

    J/psi production as a function of charged-particle pseudorapidity density in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    We report measurements of the inclusive J/ψ yield and average transverse momentum as a function of charged-particle pseudorapidity density dNch/dη in p–Pb collisions at sNN=5.02TeV with ALICE at the LHC. The observables are normalised to their corresponding averages in non-single diffractive events. An increase of the normalised J/ψ yield with normalised dNch/dη, measured at mid-rapidity, is observed at mid-rapidity and backward rapidity. At forward rapidity, a saturation of the relative yield is observed for high charged-particle multiplicities. The normalised average transverse momentum at forward and backward rapidities increases with multiplicity at low multiplicities and saturates beyond moderate multiplicities. In addition, the forward-to-backward nuclear modification factor ratio is also reported, showing an increasing suppression of J/ψ production at forward rapidity with respect to backward rapidity for increasing charged-particle multiplicity

    A comparison study of brachial blood pressure recorded with Spacelabs 90217A and Mobil-O-Graph NG devices under static and ambulatory conditions

    No full text
    Ambulatory blood pressure monitoring is an important tool in hypertension diagnosis and management. Although several ambulatory devices exist, comparative studies are scarce. This study aimed to compare for the first time brachial blood pressure levels of Spacelabs 90217A and Mobil-O-Graph NG, under static and ambulatory conditions. We examined 40 healthy individuals under static (study A) and ambulatory (study B) conditions. In study A, participants were randomized into two groups that included blood pressure measurements with mercury sphygmomanometer, Spacelabs and Mobil-O-Graph devices with reverse order of recordings. In study B, simultaneous 6-h recordings with both devices were performed with participants randomized in two sequences of device positioning with arm reversal at 3 h. Finally, all the participants filled in a questionnaire rating their overall preference for a device. In study A, brachial systolic blood pressure (117.2±10.3 vs 117.1±9.8 mm Hg, P=0.943) and diastolic blood pressure (73.3±9.4 mm Hg vs 74.1±9.4 mm Hg, P=0.611) did not differ between Spacelabs and Mobil-O-Graph or vs sphygmomanometer (117.8±11.1 mm Hg, P=0.791 vs Spacelabs, P=0.753 vs Mobil-O-Graph). Similarly, no differences were found in ambulatory systolic blood pressure (117.9±11.4 vs 118.3±11.0 mm Hg, P=0.864), diastolic blood pressure (73.7±7.4 vs 74.7±8.0 mm Hg, P=0.571), mean blood pressure and heart rate between Spacelabs and Mobil-O-Graph. Correlation analyses and Bland-Altman plots showed agreement between the monitors. Overall, the participants showed a preference for the Mobil-O-Graph. Spacelabs 90217A and Mobil-O-Graph NG provide practically identical measurements during the static and ambulatory conditions in healthy individuals and can be rather used interchangeably in clinical practice. © 2016 Macmillan Publishers Limited, part of Springer Nature

    Centrality dependence of the pseudorapidity density distribution for charged particles in Pb–Pb collisions at sNN=5.02 TeV

    No full text
    We present the charged-particle pseudorapidity density in Pb–Pb collisions at sNN=5.02 TeV in centrality classes measured by ALICE. The measurement covers a wide pseudorapidity range from −3.5 to 5, which is sufficient for reliable estimates of the total number of charged particles produced in the collisions. For the most central (0–5%) collisions we find 21400±1300, while for the most peripheral (80–90%) we find 230±38. This corresponds to an increase of (27±4)% over the results at sNN=2.76 TeV previously reported by ALICE. The energy dependence of the total number of charged particles produced in heavy-ion collisions is found to obey a modified power-law like behaviour. The charged-particle pseudorapidity density of the most central collisions is compared to model calculations — none of which fully describes the measured distribution. We also present an estimate of the rapidity density of charged particles. The width of that distribution is found to exhibit a remarkable proportionality to the beam rapidity, independent of the collision energy from the top SPS to LHC energies. © 2017 The Author(s

    Azimuthally Differential Pion Femtoscopy in Pb-Pb Collisions at sNN =2.76 TeV

    No full text
    We present the first azimuthally differential measurements of the pion source size relative to the second harmonic event plane in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon pair of sNN=2.76 TeV. The measurements have been performed in the centrality range 0%-50% and for pion pair transverse momenta 0.2<kT<0.7 GeV/c. We find that the Rside and Rout radii, which characterize the pion source size in the directions perpendicular and parallel to the pion transverse momentum, oscillate out of phase, similar to what was observed at the Relativistic Heavy Ion Collider. The final-state source eccentricity, estimated via Rside oscillations, is found to be significantly smaller than the initial-state source eccentricity, but remains positive - indicating that even after a stronger expansion in the in-plane direction, the pion source at the freeze-out is still elongated in the out-of-plane direction. The 3+1D hydrodynamic calculations are in qualitative agreement with observed centrality and transverse momentum Rside oscillations, but systematically underestimate the oscillation magnitude. © 2017 CERN. © 2017 CERN, for the ALICE Collaboration. Published by the American Physical Society under the terms of the »https://creativecommons.org/licenses/by/4.0/» Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI

    Measuring KS 0K± interactions using Pb–Pb collisions at sNN=2.76 TeV

    No full text
    We present the first ever measurements of femtoscopic correlations between the KS 0 and K± particles. The analysis was performed on the data from Pb–Pb collisions at sNN=2.76 TeV measured by the ALICE experiment. The observed femtoscopic correlations are consistent with final-state interactions proceeding via the a0(980) resonance. The extracted kaon source radius and correlation strength parameters for KS 0K− are found to be equal within the experimental uncertainties to those for KS 0K+. Comparing the results of the present study with those from published identical-kaon femtoscopic studies by ALICE, mass and coupling parameters for the a0 resonance are tested. Our results are also compatible with the interpretation of the a0 having a tetraquark structure instead of that of a diquark. © 2017 The Autho

    Production of muons from heavy-flavour hadron decays in p–Pb collisions at sNN=5.02 TeV

    No full text
    The production of muons from heavy-flavour hadron decays in p–Pb collisions at sNN=5.02 TeV was studied for 2<pT<16 GeV/c with the ALICE detector at the CERN LHC. The measurement was performed at forward (p-going direction) and backward (Pb-going direction) rapidity, in the ranges of rapidity in the centre-of-mass system (cms) 2.03<ycms<3.53 and −4.46<ycms<−2.96, respectively. The production cross sections and nuclear modification factors are presented as a function of transverse momentum (pT). At forward rapidity, the nuclear modification factor is compatible with unity while at backward rapidity, in the interval 2.5<pT<3.5 GeV/c, it is above unity by more than 2σ. The ratio of the forward-to-backward production cross sections is also measured in the overlapping interval 2.96<|ycms|<3.53 and is smaller than unity by 3.7σ in 2.5<pT<3.5 GeV/c. The data are described by model calculations including cold nuclear matter effects. © 2017 The Author(s

    Jet-like correlations with neutral pion triggers in pp and central Pb–Pb collisions at 2.76 TeV

    No full text
    We present measurements of two-particle correlations with neutral pion trigger particles of transverse momenta 8>pT trig>16 GeV/c and associated charged particles of 0.5>pT assoc>10 GeV/c versus the azimuthal angle difference Δφ at midrapidity in pp and central Pb–Pb collisions at sNN=2.76 TeV with ALICE. The new measurements exploit associated charged hadrons down to 0.5 GeV/c, which significantly extends our previous measurement that only used charged hadrons above 3 GeV/c. After subtracting the contributions of the flow background, v2 to v5, the per-trigger yields are extracted for |Δφ|>0.7 on the near and for |Δφ−π|>1.1 on the away side. The ratio of per-trigger yields in Pb–Pb to those in pp collisions, IAA, is measured on the near and away side for the 0–10% most central Pb–Pb collisions. On the away side, the per-trigger yields in Pb–Pb are strongly suppressed to the level of IAA≈0.6 for pT assoc<3 GeV/c, while with decreasing momenta an enhancement develops reaching about 5 at low pT assoc. On the near side, an enhancement of IAA between 1.2 at the highest to 1.8 at the lowest pT assoc is observed. The data are compared to parton-energy-loss predictions of the JEWEL and AMPT event generators, as well as to a perturbative QCD calculation with medium-modified fragmentation functions. All calculations qualitatively describe the away-side suppression at high pT assoc. Only AMPT captures the enhancement at low pT assoc, both on the near and away side. However, it also underpredicts IAA above 5 GeV/c, in particular on the near-side. © 2016 The Author(s
    corecore